142 research outputs found

    Fundamental Physical Constants: Looking from Different Angles

    Full text link
    We consider fundamental physical constants which are among a few of the most important pieces of information we have learned about Nature after its intensive centuries-long studies. We discuss their multifunctional role in modern physics including problems related to the art of measurement, natural and practical units, origin of the constants, their possible calculability and variability etc

    A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    Get PDF
    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally

    Precision Optical Measurements and Fundamental Physical Constants

    Get PDF
    A brief overview is given on precision determinations of values of the fundamental physical constants and the search for their variation with time by means of precision spectroscopy in the optical domain

    One- and two-photon resonant spectroscopy of hydrogen and anti-hydrogen atoms in external electric fields

    Full text link
    The resonant spectra of hydrogen and anti-hydrogen atoms in the presence of an external electric field are compared theoretically. It is shown that nonresonant corrections to the transition frequency contain terms linear in the electric field. The existence of these terms does not violate space and time parity and leads to a difference in the resonant spectroscopic measurements for hydrogen and anti-hydrogen atoms in an external electric field. The one-photon 1s-2p and the two-photon 1s-2s resonances are investigated

    Asymmetry of the natural line profile for the hydrogen atom

    Get PDF
    The asymmetry of the natural line profile for transitions in hydrogen-like atoms is evaluated within a QED framework. For the Lyman-alpha 1s2p1s-2p absorption transition in neutral hydrogen this asymmetry results in an additional energy shift of 2.929856 Hz. For the 2s1/22p3/22s_{1/2}-2p_{3/2} transition it amounts to -1.512674 Hz. As a new feature this correction turns out to be process dependent. The quoted numbers refer to the Compton-scattering process.Comment: RevTex, 7 Latex pages, 1 figur

    Double-Logarithmic Two-Loop Self-Energy Corrections to the Lamb Shift

    Get PDF
    Self-energy corrections involving logarithms of the parameter Zalpha can often be derived within a simplified approach, avoiding calculational difficulties typical of the problematic non-logarithmic corrections (as customary in bound-state quantum electrodynamics, we denote by Z the nuclear charge number, and by alpha the fine-structure constant). For some logarithmic corrections, it is sufficient to consider internal properties of the electron characterized by form factors. We provide a detailed derivation of related self-energy ``potentials'' that give rise to the logarithmic corrections; these potentials are local in coordinate space. We focus on the double-logarithmic two-loop coefficient B_62 for P states and states with higher angular momenta in hydrogenlike systems. We complement the discussion by a systematic derivation of B_62 based on nonrelativistic quantum electrodynamics (NRQED). In particular, we find that an additional double logarithm generated by the loop-after-loop diagram cancels when the entire gauge-invariant set of two-loop self-energy diagrams is considered. This double logarithm is not contained in the effective-potential approach.Comment: 14 pages, 1 figure; references added and typographical errors corrected; to appear in Phys. Rev.

    The First Cold Antihydrogen

    Full text link
    Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter. This paper describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and Related Topics, to be published in NIM

    Ultra-precise measurement of optical frequency ratios

    Full text link
    We developed a novel technique for frequency measurement and synthesis, based on the operation of a femtosecond comb generator as transfer oscillator. The technique can be used to measure frequency ratios of any optical signals throughout the visible and near-infrared part of the spectrum. Relative uncertainties of 101810^{-18} for averaging times of 100 s are possible. Using a Nd:YAG laser in combination with a nonlinear crystal we measured the frequency ratio of the second harmonic νSH\nu_{SH} at 532 nm to the fundamental ν0\nu_0 at 1064 nm, νSH/ν0=2.000000000000000001×(1±7×1019)\nu_{SH}/\nu_0 = 2.000 000 000 000 000 001 \times (1 \pm 7 \times 10^{-19}).Comment: 4 pages, 4 figure

    Can spacetime curvature induced corrections to Lamb shift be observable?

    Full text link
    The Lamb shift results from the coupling of an atom to vacuum fluctuations of quantum fields, so corrections are expected to arise when the spacetime is curved since the vacuum fluctuations are modified by the presence of spacetime curvature. Here, we calculate the curvature-induced correction to the Lamb shift outside a spherically symmetric object and demonstrate that this correction can be remarkably significant outside a compact massive astrophysical body. For instance, for a neutron star or a stellar mass black hole, the correction is \sim 25% at a radial distance of 4GM/c24GM/c^2, \sim 16% at 10GM/c210GM/c^2 and as large as \sim 1.6% even at 100GM/c2100GM/c^2, where MM is the mass of the object, GG the Newtonian constant, and cc the speed of light. In principle, we can look at the spectra from a distant compact super-massive body to find such corrections. Therefore, our results suggest a possible way of detecting fundamental quantum effects in astronomical observations.Comment: 13 pages, 3 figures, slight title change, clarifications and more discussions added, version to be published in JHE

    Theory of muonic hydrogen - muonic deuterium isotope shift

    Full text link
    We calculate the corrections of orders alpha^3, alpha^4 and alpha^5 to the Lamb shift of the 1S and 2S energy levels of muonic hydrogen (mu p) and muonic deuterium (mu d). The nuclear structure effects are taken into account in terms of the proton r_p and deuteron r_d charge radii for the one-photon interaction and by means of the proton and deuteron electromagnetic form factors in the case of one-loop amplitudes. The obtained numerical value of the isotope shift (mu d) - (mu p) for the splitting (1S-2S) 101003.3495 meV can be considered as a reliable estimation for corresponding experiment with the accuracy 10^{-6}. The fine structure interval E(1S)-8E(2S) in muonic hydrogen and muonic deuterium are calculated.Comment: 22 pages, 7 figure
    corecore